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Abstract. We prove that the center of the generic walled Brauer algebra Br,1(δ) is generated
by supersymmetric polynomials evaluated in Jucys-Murphy elements. We provide also a general
strategy to obtain the same result in the case of Br,s(δ).

1. Introduction

Let V be the natural representation of GLn(V ). There are two actions on the rth tensor product
V ⊗r: the first action is by GLn(V ), which is the (left) natural factor-wise action. The second one
is the (right) natural action of the symmetric group Sn of permuting the tensor factors. One can
easily see that these two actions compute. However, there is a stronger relation between them,
as asserted by Schur-Weyl duality [14], namely that the span of the image of Sn and GLn(V ) in
End(V ⊗r) are centralizers of each other.

The Brauer algebra Br(δ) was introduced by Brauer [1], in the context of classical invariant
theory, to play the role of the symmetric group in a corresponding Schur-Weyl duality for the
symplectic groups (for δ positive integer) and for the orthogonal groups (for δ negative integer).
The Brauer algebra can be defined for arbitrary δ ∈ C, and it is always semi-simple for δ ̸∈ Z (see,
for example, [13]).

The walled Brauer algebra Br,s(δ) is a subalgebra of Br+s(δ) and it was introduced independently
by Turaev and by Koike [6, 12]. Their motivation was the corresponding Schur-Weyl duality relating
the walled Brauer algebra Br,s(n) with the action of GLn(C) on mixed tensor space V ⊗r ⊗ (V ∗)⊗s.

Brauer algebras and walled Brauer algebras are particular examples of diagram algebras. In
their diagrammatic description, one can see the group algebra of the symmetric group as their
subalgebra. The goal of this paper is to give a description of the center of the walled Brauer
algebra Br,s(δ). Therefore, we first mention some properties of the center of the group algebra CSr.

The center of CSr has a (natural) basis {Cµ |µ is a partition of r}, where Cµ denotes the sum
of all permutations with the same cycle type µ. The above elements were first introduced in [4, 8].

Lk :=
k−1∑
j=1

(j, k), 1 ≤ k ≤ r

They are called the Jucys-Murphy elements of CSr and they play an important role in the de-
scription of its center. More precisely, the center of CSr consists of all the symmetric polynomials
evaluated in Jucys-Murphy elements (for more details, see [4, 7]).

Jucys-Murphy elements for the algebra Br,s(δ) were introduced in [2, 9, 10] in order to describe
its center by analogy to the center of the symmetric group algebra. More precisely, it is conjectured
(see [2, Remark 2.6] and [10, Conjecture 7.3]) that symmetric polynomials in [2] and some particular
doubly symmetric polynomials in [10] evaluated in Jucys-Murphy elements generate the center of
Br,s(δ).

We would like to thank the Women in Noncommutative Algebra and Representation Theory (WINART2) work-
shop, held at the University of Leeds in May 2019, where this project started.
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In [5] Jung and Kim, inspired by [10, Conjecture 7.3], introduced a new family of Jucys-Murphy
elements for the walled Brauer algebra Br,s(δ), which we denote again as L1, . . . , Lr+s. They proved
that supersymmetric polynomials in these elements are central in Br,s(δ). With this new definition
(which is, in fact, a modification of the Jucys-Murphy elements defined in [10]) they proved the
following result in the semisimple case:

Theorem 1.1. [5, Theorem 3.5] If the walled Brauer algebra Br,s(δ) is semisimple, then the su-
persymmetric polynomials in L1, . . . , Lr+s generate the center of Br,s(δ).

It is known [3, Theorem 6.3] that the algebra Br,s(δ) is semisimple, except finitely many values
of δ ∈ C for a fixed pair (r, s). Moreover, in the semisimple case, the dimension of the center is
the same as the number of the isomorphism classes of simple modules. Therefore, we need to recall
some facts about the simple modules of the walled Brauer algebra.

For a partition λ = (λ1, λ2, . . . ), set |λ| :=
∑
i≥1

λi. Let us denote Λ the set of bipartitions and let

k ∈ N0. We set:

Λr,s :=
min(r,s)∐
k=0

{(λ, µ) ∈ Λ | |λ| = r − k, |µ| = s− k}

Λ̇r,s :=

{
Λr,s if δ ̸= 0 or r ̸= s or r = s = 0,

Λr,s − {(∅, ∅)} if δ = 0 and r = s ̸= 0.

For (λ, µ) ∈ Λ̇r,s, there is an indecomposable module Cr,s((λ, µ)), called the cell module. Each cell

module Cr,s((λ, µ)) has an irreducible head Dr,s((λ, µ)) and the family {Dr,s((λ, µ)) | (λ, µ) ∈ Λ̇r,s}
is the complete set of mutually non-isomorphic simple modules over Br,s(δ) (see [3, Theorem 2.7]).

In the proof of [5, Theorem 3.5], Jung and Kim provide a set of supersymmetric polynomials

{pλ |λ ∈ Λ̇r,s} such that

{pλ(L1, . . . , Lr+s) |λ ∈ Λ̇r,s}
is a basis of the center of Br,s(δ).

At this point, a natural question about the generic case arises (see [5, Conjecture 5.4]). The
aim of this paper is to investigate this question, namely to see if for the generic case, the center
of the walled Brauer algebra Br,s(δ) is generated by supersymmetric polynomials in Jucys-Murphy
elements L1, . . . , Lr+s and if its dimension is |Λr,s|.

We will describe briefly the general strategy to obtain such a result, starting with a result of
Shalile [11]. Shalile associated to each (r, s)-walled Brauer diagram d a set of words c(d) called
walled generalized cycle types, which they play the role of cycle types in the symmetric group, in
the following sense ([11, Section 10]): For each walled generalized cycle type µ we set Cµ := {d ∈
Br,s(δ) | c(d) = µ}. A basis of the centralizer ZBr,s(δ)(C[Sr × Ss]) of the subalgebra C[Sr × Ss] in
Br,s(δ) is of the form

{
∑
d∈Cµ

d |Cµ walled generalized cycle type }

.
The walled Brauer algebra is generated by the generators of Sr × Ss and of an extra generator

denoted by e. Hence, in order to find the center of Br,s(δ), we consider the equation∑
µ

aµ
∑
d∈Cµ

(de− ed) =
∑
x∈B

bxx.

Our goal is to solve the system {bx = 0}, which can be seen as a set of linear equations in the
variables aµ. More precisely, we need to prove that the rank of this system equals

k := # walled generalized cycle types− |Λr,s|.
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Using the result of Jung and Kim in the semisimple case, we prove that for any choice of δ ∈ C,
|Λr,s| is a lower bound of the dimension of the center of Br,s(δ) (Proposition 3.5). Therefore,
instead of solving the aforementioned system, which is very large and in most cases very difficult
to be solved, one needs to find k linear independently equations in it.

In Proposition 2.5 we prove there is a bijection between the set |Λr,s| and the set of some (r, s)-
walled diagrams of Br,s(δ). These diagrams have a particular generalized walled cycle type, which
we define as cycle type with trivial parts. Using this result, we prove that the linear independently
equations we need to find, could be obtained if for each generalized walled cycle type µ containing
a non-trivial part, there is a diagram x with c(x) = µ (Proposition 3.6).

However, proving that these equations are linearly independent seems complicated for the mo-
ment for the general case. The main result of the paper is Theorem 4.8:

Theorem 1.2. The dimension of the center of Br,1(δ) is equal to |Λr,1|.

In the case of Br,1(δ), we give a particular diagram x for each cycle type, which contains non-
trivial parts. We associate to x two particular diagrams σx and zx, whose walled generalized cycle
types c(σx) and c(zx) determine c(x). These new diagrams are used in order to prove the linear
independence.

2. Preliminaries

2.1. Walled Brauer algebras. Let r and s be nonnegative integers. An (r, s)-walled Brauer
diagram is a graph drawn in a rectangle with (r+s) vertices on its top and bottom edges, numbered
1, . . . , r + s in order from left to right. Each vertex is connected by a strand to exactly one other
vertex. In addition, there is a vertical wall separating the left r vertices form the right s vertices,
such that the following conditions hold:

(1) A propagating line connects a vertex on the top row with one on the bottom row, and it
cannot cross the wall.

(2) A northern arc (respectively, southern arc) connects vertices on the top row (respectively,
on the bottom row), and it must cross the wall.

For example, the following graphs are (4, 2)-Brauer diagrams:

x := , y :=

Let δ be a complex number. The walled Brauer algebra Br,s(δ) is the C-linear span of the (r, s)-
walled diagrams with the multiplication defined as follows: The product of two (r, s)-walled Brauer
diagrams d1 and d2 is determined by putting d1 above d2 and identifying the top vertices of d1
with the bottom vertices of d2. Let n be the number of loops in the middle row so obtained. The
product d1d2 is given by δn times the resulting diagram with loops omitted.

For example, for the diagrams x and y above we have:

xy = δ2 yx = δ

The dimension of Br,s(δ) equals (r + s)! (see, for example, [2, 2.2]).
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We denote by si (1 ≤ i ≤ r − 1 or r + 1 ≤ i ≤ r + s− 1) and e the following (r, s)-walled Brauer
diagrams:

si :=

1 r + s

· · · · · ·

i i+ 1

, e :=

1 r + s

· · · · · ·

r r + 1

Note that the B0,n(δ) ≃ Bn,0(δ) ≃ CSn, the group algebra of the symmetric group Sn on n letters.
The algebra Br,s(δ) is generated by the elements si (1 ≤ i ≤ r − 1 or r + 1 ≤ j ≤ r + s− 1) and

e.
For any (r, s)-walled Brauer diagram d, we denote by d∗ the flip diagram of d, obtained by

horizontally flipping d. Therefore, we can define a C-linear anti-automorphism ∗ : Br,s(δ) → Br,s(δ).
The following theorem is Theorem 6.3 in [3] and it provides a criterion of the semisimplicity for

the algebra Br,s(δ).

Theorem 2.1. The walled Brauer algebra Br,s(δ) is semisimple if and only if one of the following
holds:

(1) r = 0 or s = 0,
(2) δ ̸∈ Z,
(3) |δ| > r + s− 2,
(4) δ = 0, and (r, s) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}.

Therefore, for a fixed pair (r, s) the algebra Br,s(δ) is semisimple except for finitely many values
δ ∈ C.

2.2. Walled generalized cycle types. The following definition is Definition 7.3 in [11]. For a
diagram d ∈ Br,s(δ) we define the walled generalized cycle type c(d) of d to be a set of words (called
parts) in the alphabet L,R,N and S, obtained as follows: We first connect each vertex in the top
row of d with the vertex in the bottom row below it. The parts of c(d) correspond to the connected
components of this new graph, as follows: We take a connected component of the new graph, we
pick up a vertex of it and we follow the path, until all the edges of the connected component have
been read off once. Following the path, we record in order with the letters L,R,N and S the types
of the edges of the diagram d which are traversed. More precisely, we record:

• N if the type of the edge is a northern arc.
• S if the type of the edge is a southern arc.
• L if the type of the edge is a propagating line to the left of the wall.
• R if the type of the edge is a propagating line to the right of the wall.

For example, for the diagrams x and y we saw in Section 2.1 we have c(x) = {LL,NSNS} and
c(y) = {L,L,NS,NS}.

Two parts are equivalent if one is obtained from the other by repeated cyclic permutation and/or
reverse reading. Two walled generalized cycle types are equal if their parts are equivalent. For
example, we also have c(y) = {L,L, SN, SN} and c(x) = {LL, SNSN}.

Remark 2.2. From the definition of (equal) walled generalized cycle types we notice the following:

(1) Each part of c(d) is of one of the following forms:
(a) La, a ≥ 1.
(b) Rb, b ≥ 1.
(c) NRb1SLa1NRb2SLa2 . . . , for some ai, bi ≥ 0.

(2) The number of N ’s in c(d) equals the number of S’s in c(d). We denote this number by t.
Then, we also have that the number of L’s in c(d) equals r − t, while the number of R’s in
c(d) equals s− t.
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(3) In general, c(d) ̸= c(d∗). For example, we consider the following diagram d of the walled
Brauer algebra B3,3(δ):

d = .

We have c(d) = {NSNRSL}. On the other hand,

d∗ =

We have c(d∗) = {NSLNRS}. We notice that in c(d∗) we have that NS is followed always
by an R, while in c(d) the NS is followed always by N . Hence, c(d) ̸= c(d∗).

The following theorem is Theorem 7.7 in [11].

Theorem 2.3. Two diagrams of Br,s(δ) are Sr×Ss-conjugate if and only if they have equal walled
generalized cycle types.

Definition 2.4. Let d ∈ Br,s(δ) with cycle type c(d). We call a part of c(d) of type (a), (b) or (c)
of the form NS in Remark 2.2(1) a trivial part.

2.3. Weights. For a partition λ = (λ1, λ2, . . . ), set |λ| :=
∑
i≥1

λi. Let us denote Λ the set of

bipartitions and let k ∈ N0. We set:

Λr,s :=
min(r,s)∐
k=0

{(λ, µ) ∈ Λ | |λ| = r − k, |µ| = s− k},

Λ̇r,s :=

{
Λr,s if δ ̸= 0 or r ̸= s or r = s = 0,

Λr,s − {(∅, ∅)}, if δ = 0 and r = s ̸= 0.

The elements of Λ̇r,s are called the weights of Br,s(δ).
For each weight λ, there is an indecomposable module, Cr,s(λ), called the cell module, which has

an irreducible head Dr,s(λ) and the family

{Dr,s(λ) |λ ∈ Λ̇r,s}
is the complete set of mutually non-isomorphic simple modules over Br,s(δ) (see [3, Theorem 2.7]).

The next proposition associates weights with some particular diagrams of Br,s(δ).

Proposition 2.5. There is a bijection between the set Λr,s and the set of diagrams in Br,s(δ) having
only trivial parts.

Proof. Let k ∈ N0 and let λ = (λ1, λ2, . . . ), µ = (µ1, µ2, . . . ) partitions of r−k and s−k, respectively.
The following map is a bijection:

(λ, µ) 7→

d ∈ Br,s(δ) | c(d) = {Lλ1 , Lλ2 , . . . , Rµ1 , Rµ2 , . . . , NS, NS, . . . , NS︸ ︷︷ ︸
k terms

}

 .

□
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2.4. Jucys-Murphy elements. There are different definitions for Jucys-Murphy elements for the
Brauer algebra Br,s(δ). In this paper, we use Definition 2.1 of [5].

Let (a, b) = (b, a) be the following diagram:

· · · · · · · · · · · ·

1 r r + 1 r + sa b

if 1 ≤ a < b ≤ r,

· · · · · · · · · · · ·

1 r r + 1 r + sa b

if r + 1 ≤ a < b ≤ r + s,

Let also ej,k, (1 ≤ j ≤ r, r + 1 ≤ k ≤ r + s) be the diagram

· · · · · · · · · · · ·

1 r r + 1 r + sj k

For each 1 ≤ k ≤ r + s we define the Jucys-Murphy elements Lk of Br,s(δ) as follows:

Lk :=



0 if k = 1,
k−1∑
j=1

(j, k) if 1 < k ≤ r,

−
r∑

j=1
ej,k +

k−1∑
j=r+1

(j, k) + δ if r + 1 ≤ k ≤ r + s.

We now collect some facts from Section 2 of [5], where we use the Jucys Murphy elements to
describe the center of Br,s(δ) for the semisimple case. In order to do that, we first need to recall
the notion of supersymmetric polynomials.

Let m,n be nonnegative integers. An element p in the polynomial ring C[x1, . . . , xm, y1, . . . , yn]
is sypersymmetric if

(1) p is symmetric in x1, . . . , xm and y1, . . . , yn separately.
(2) The substitution xm = t, y1 = −t yields a polynomial in x1, . . . , xm−1, y2, . . . , ym which is

independent of t.

We denote by Sm,n[x; y] the set of supersymmetric polynomials in x1, . . . , xm, y1, . . . , yn.
The following result is Corollary 2.9 in [5] and it provides us with some central elements of

Br,s(δ).

Proposition 2.6. For every supersymmetric polynomial p in Sr,s[x; y], the element

p(L1, . . . , Lr, Lr+1, . . . , Lr+s)

belongs to the center of Br,s(δ).

3. Facts on the center of Br,s(δ)

3.1. The semisimple case. We know that when an algebra is semisimple, the dimension of the
center is the same as the number of the isomorphic classes of simple modules. Therefore, when
Br,s(δ) is semisimple, the dimension of the center is the cardinality of Λ̇r,s. Jung and Kim [5,
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Theorem 3.5] gave a basis of the center of Br,s(δ). More precisely, they proved the following
theorem.

Theorem 3.1. If the walled Brauer algebra Br,s(δ) is semisimple, the supersymmetric polynomials
in L1, . . . , Lr+s generate the center of Br,s(δ). Moreover, there is a set of supersymmetric polyno-

mials {pλ ∈ Sr,s[x; y] |λ ∈ Λ̇r,s}, such that the set {pλ(L1, . . . , Lr+s) |λ ∈ Λ̇r,s} is a basis of the
center of Br,s(δ).

One can find a precise description of these supersymmmetric polynomials pλ in [5, Section 3].
The goal of this paper is to describe the center of Br,s(δ) in the non-semisimple case. More

precisely, we want to prove the following conjecture [5, Conjecture 5.4]:

Conjecture 3.2. For every δ ∈ C, the center of the walled Brauer algebra Br,s(δ) is generated by
the supersymmetric polynomials in the Jucys-Murphy elements L1, . . . , Ln.

3.2. Towards general case. Let z be a formal parameter. We consider the walled Brauer algebra

B
C[z]
r,s (z) over the polynomial ring C[z].
We now define the Jucys-Murphy elements Li, 1 ≤ i ≤ r + s as in Section 2.4, replacing δ by z.

One can repeat the proof of Proposition 2.6 and show the following:

Proposition 3.3. All supersymmetric polynomials (with coefficients in C[z]) in L1, . . . ,Lr+s are

central in B
C[z]
r,s (z).

We now take a δ0 ∈ C (δ0 ̸= 0), such that Br,s(δ0) is semisimple (see Theorem 2.1). We set
m := |Λr,s| and we choose Pi ∈ Sr,s[x; y] for 1 ≤ i ≤ m to be supersymmetric polynomials such
that

{Pi(L1, . . . , Lr+s) | 1 ≤ i ≤ m}
form a C-basis for the center Z(Br,s(δ0)) of Br,s(δ0).

Let C(z) be the field of fractions of C[z] and we consider the algebra

BC(z)
r,s (z) := BC[z]

r,s (z)⊗C[z] C(z).

Using the same arguments of Theorem 6.3 in [3], we have that B
C(z)
r,s (z) is a semisimple C(z)-

algebra with m simple modules, hence

dimC(z) Z(BC(z)
r,s (z)) = m.

Moreover,
Z(BC(z)

r,s (z)) = Z(BC[z]
r,s (z))⊗C[z] C(z).

Therefore,
rankC[z] Z(BC[z]

r,s (z)) = dimC(z) Z(BC(z)
r,s (z)) = m.

Proposition 3.4. The set {Pi(L1, . . . ,Lr+s) | 1 ≤ i ≤ m} forms a C[z]-basis for Z(B
C[z]
r,s (z)).

Proof. From Proposition 3.3 we have that Pi(L1, . . . ,Lr+s) ∈ Z(B
C[z]
r,s (z)), for every i = 1, . . . ,m.

Moreover, rankC[z] Z(B
C[z]
r,s (z)) = m. Therefore, it is enough to show that this set is linearly

independent.

Assume
m∑
i=1

ai(z)Pi(L1, . . . ,Lr+s) = 0, for some ai(z) ∈ C[z], not all 0. Dividing by the highest

power of (z − δ0) which divides all the ai(z)’s, we can assume that there exists some i0 with
ai0(δ0) ̸= 0.

Now, specializing to z = δ0, and noting that under this specialization the elements Li’s become
the Li’s, we get

m∑
i=1

ai(δ0)Pi(L1, . . . , Lr+s) = 0.
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Now, as {Pi(L1, . . . , Lr+s) | 1 ≤ i ≤ m} is a linearly independent set, we must have ai(δ0) = 0, ∀i =
1, . . . ,m, which contradicts the fact that ai0(δ0) ̸= 0. □

We now take an arbitrary δ ∈ C and we consider

BC
r,s(δ) = BC[z]

r,s (z)⊗C[z] C[z]/⟨z − δ⟩.

For any Q ∈ B
C[z]
r,s (z), we write

Q̄ := Q⊗C[z] C[z]/⟨z − δ⟩ ∈ BC
r,s(δ).

To simplify notation we write

Pi := Pi(L1, . . . ,Lr+s) ∈ BC[z]
r,s (z), i = 1, . . . ,m.

Proposition 3.5. For any choice of δ ∈ C, the set {P̄i | 1 ≤ i ≤ m} is a linearly independent set
in Z(BC

r,s(z)). In particular, dimC Z(BC
r,s(z)) ≥ |Λr,s|.

Proof. First note that as Pi are central elements in B
C[z]
r,s (z) we have that P̄i are central in BC

r,s(z).
Now let

m∑
i=1

aiP̄i = 0

for some ai ∈ C. Then, we have
m∑
i=1

aiP̄i =
m∑
i=1

aiPi = 0

and so

(3.1)
m∑
i=1

aiPi = (z − δ)R

for some R ∈ Z(B
C[z]
r,s (z)). Thus, R can be written as R =

m∑
i=1

bi(z)Pi, for some bi(z) ∈ C[z]. Using

now Equation (3.1) we get
m∑
i=1

aiPi =
m∑
i=1

(z−δ)bi(z)Pi. As ai ∈ C, bi(z) ∈ C[z] and {Pi | 1 ≤ i ≤ m}

are linearly independent, we must have ai = (z − δ)bi(z) = 0, ∀i = 1, . . . ,m. □

Let B be the diagram basis of Br,s(δ). For each walled generalized cycle type µ we set Cµ :=
{d ∈ B | c(d) = µ}.

In [11, Section 7] there is a description of a basis of the centralizer of ZBr,s(δ)(C(Sr×Ss)). More
precisely, each element of the basis corresponds to a walled generalized cycle type µ and it is of the
form

∑
d∈Cµ

d.

Recall from Section 2.1 that the walled Brauer algebra Br,s(δ) is generated by the genera-
tors of Sr × Ss and by the generator e. A central element of Br,s(δ) is therefore an element
of ZBr,s(δ)(C(Sr × Ss)) which commutes with the generator e. Let us consider an element of
ZBr,s(δ)(C(Sr × Ss)), which is of the form

∑
µ
aµ

∑
d∈Cµ

d, for some aµ ∈ C. Therefore, in order to

find the center of Br,s(δ), we consider the equation

(3.2)
∑
µ

aµ
∑
d∈Cµ

(de− ed) =
∑
x∈B

bxx.

Our goal is to prove that the rank of the system

(3.3) {bx = 0 | for all x ∈ B}.
is |Λr,s|. The next proposition gives us a condition for this to be true.
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Proposition 3.6. If for each cycle type µ containing a non-trivial part, there is a diagram x with
c(x) = µ such that {bx = 0, | for all such x} are linearly independent, then the system (3.3) is of
rank |Λr,s|.

Proof. Since the coefficients bx are linear combinations of the coefficients aµ, the system (3.3) can
be viewed as a set of linear equations in the variables aµ. Therefore, the dimension of the center
equals

dimZ(Br,s(δ)) = # cycle types for Br,s − rank of the system (3.3)

Our goal is to prove that dimZ(Br,s(δ)) = |Λr,s|. From Proposition 3.5 it is enough to prove that

# cycle types for Br,s − |Λr,s| ≤ rank of the system (3.3),

since this would imply that

dimZ(Br,s(δ)) ≤ # cycle types for Br,s − (# cycle types for Br,s − |Λr,s|) = |Λr,s|,

as required.
In order to prove that, we need to find # cycle types for Br,s − |Λr,s| linearly independent equa-

tions in (3.3). The result now follows from our assumption and Proposition 2.5. □

4. The center of Br,1(δ)

Let B be the diagram basis of Br,1(δ), consisting of (r + 1)! diagrams. We recall that for each
walled generalized cycle type µ we set Cµ = {d ∈ B | c(d) = µ}.

The following lemma is easy to see and it is true only for the case of Br,1(δ) (see Remark 2.2
(3)).

Lemma 4.1. The flip map ∗ gives a bijection Cµ → Cµ, d 7→ d∗ for each µ.

We now consider equation (3.2) and system (3.3). Our first attempt to solve this system is to
find diagrams x ∈ Br,1(δ) for which we have bx = 0 (and, hence, simplify the undermentioned
system).

The first result on this direction is the following proposition:

Proposition 4.2. bx∗ = −bx. Therefore, if x = x∗ then bx = 0.

Proof. We apply the anti-automorphism ∗ to both sides of (3.2) and we have:∑
µ
aµ

∑
d∈Cµ

(de− ed)∗ =
∑
x∈B

bxx
∗ =⇒

∑
µ
aµ

∑
d∈Cµ

(e∗d∗ − d∗e∗) =
∑
x∈B

bxx
∗ e∗=e

=⇒

∑
µ
aµ

∑
d∈Cµ

(ed∗ − d∗e) =
∑
x∈B

bxx
∗ 4.1

=⇒∑
µ
aµ

∑
d∈Cµ

(ed− de) =
∑
x∈B

bxx
∗ =⇒

−
∑
µ
aµ

∑
d∈Cµ

(de− ed) =
∑
x∈B

bxx
∗ =⇒

−
∑
x∈B

bxx =
∑
x∈B

bxx
∗ =⇒

−
∑
x∈B

bxx =
∑
x∈B

bx∗x.

□

The next proposition is another case of a basis diagram x, such that bx = 0.
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Proposition 4.3. Let x = Q ∈ Br,1(δ), then bx = 0.

Proof. Let d ∈ B such that de = δmx, m ∈ {0, 1}. We have the following cases:

(1) d = Q ∈ Sr−1, with Q as defined in the diagram of x. We have de = x.
(2) d = x. We have de = δx.
(3) d = x(i, r), where (i, r) corresponds to the permutation diagram swapping i and r. We

have de = x.

We notice that for every diagram d as described above, there is a diagram d′ ∈ B such that
ed′ = δmx, m ∈ {0, 1}. More precisely, for the cases (1) and (2), the diagram d′ = d. For case (3),
we have d′ = (i, r)x. We notice that the diagrams d′ we have here are all the diagrams d′ ∈ B such
that de = δmx, m ∈ {0, 1}. In order to prove that bx = 0 it is enough to prove that in each case, d
and d′ have the same walled generalized cycle type. Then the terms in the sum in equation (3.2)
cancel out and, hence, bx = 0. For cases (1) and (2) this is obvious. It remains to prove that the
diagrams x(i, r) and (i, r)x have the same walled generalized cycle type.

There are two types of parts in the walled generalized cycle type c(x) of the diagram x: The
part p1 = NS and the parts pj , j = 2, 3, . . . , k, which are of one of the forms: L, LL, LLL, . . . .
Let pj0 be the part, which belongs to the connected component with vertex i on top.

In the diagram of d there is a northern arc, which connects the vertices r and r + 1 on top row
and a southern arc, which connects the vertices i and r on bottom row. The propagating lines
are the same as the ones appearing in the diagram of x, with one difference: The propagating
line which connects the vertex i on bottom row with the vertex i′ on top row in the diagram
of x, it connects now the vertex r on bottom row with the vertex i′ on top row. Therefore,
c(d) = {NSpj0 , p2, p3, pj0−1, pj0+1, . . . , pk}.

Similarly, in the diagram of d′ there are two arcs, which are the flipped arcs of the diagram
of d and the propagating lines remaining from the diagram of x with again one difference: the
propagating line which connects the vertex i on top row with the vertex i′ on bottom row in the
diagram of x, it connects now the vertex r on top row with the vertex i′ on the bottom row.
Therefore, we have c(d′) = {NSpj0 , p2, p3, pj0−1, pj0+1, . . . , pk} = c(d). □

We consider now the system (3.3). According to Proposition 4.3, the only possible diagrams x
with bx ̸= 0 are of the form

or

Note that the second case can be obtained from the first by applying the flip map ∗. Therefore, by
Proposition 4.2, it is enough to consider only the first case.
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Proposition 4.4. Let x, y ∈ Br,1(δ) be of the form

with y = σxσ−1, for some σ ∈ Sr. Then, bx = by.

Proof. We first notice that, since both diagrams x and y have the northern arc that connects the
vertices r and r + 1, we must have σ ∈ Sr−1. Therefore, σe = eσ and σ−1e = eσ−1.

We now conjugate Equation (4.1) by σ and we get:∑
µ
aµ

∑
d∈Cµ

σ−1(de− ed)σ =
∑
x∈B

bxσ
−1xσ =⇒∑

µ
aµ

∑
d∈Cµ

(σ−1deσ − σ−1edσ) =
∑
x∈B

bxσ
−1xσ =⇒

∑
µ
aµ

∑
d∈Cµ

(σ−1dσe− eσ−1dσ) =
∑
x∈B

bxσ
−1xσ

2.3
=⇒∑

µ
aµ

∑
d∈Cµ

(de− ed) =
∑
x∈B

bxσ
−1xσ =⇒∑

x∈B
bxx =

∑
x∈B

bσxσ−1x.

□

Definition 4.5. Let x ∈ Br,1(δ) be of the form

r r + 1

ix r + 1

where ix ̸= r. The diagram x defines the following bijection, given by the propagating lines in the
diagram x:

fx : {1, . . . , r − 1} → {1, . . . , îx, . . . , r}.
We associate two diagrams in Br,1(δ) to x as follows:

(i) Define σx ∈ Sr × S1 ⊆ Br,1(δ) by

σx(k) =


fx(k), if k ∈ {1, . . . , r − 1}
ix, if k = r

r + 1, if k = r + 1

(ii) Define zx ∈ Br,1(δ) as follows: The vertices ix and r+1 on top row (respectively, on bottom
row) are connected by a northern arc (respectively, a southern arc). The propagating lines

are given by the permutation τx : {1, . . . , îx, . . . , r} → {1, . . . , îx, . . . , r}, defined by

τx(k) =

{
fx(k), if k ̸= r

fx(ix), if k = r
11



For example, let x ∈ B6,1(δ) be the diagram

Then, we have: fx(1) = 4, fx(2) = 1, fx(3) = 2, fx(4) = 5, fx(5) = 6. Therefore:

σx = , zx =

Proposition 4.6. Let x, σx and zx be as in 4.5, then we have:

(i) eσx = x. Moreover, c(σx) is obtained from c(x) by replacing NS by L and σx is the unique
diagram y ∈ Br,1(δ) with c(y) without NS satisfying ey = x.

(ii) ezx = x. Moreover, c(zx) is obtained from c(x) by removing NS and adding it back as a
trivial part and zx is the unique diagram y ∈ Br,1(δ) with c(y) having NS only as trivial
part satisfying ey = x.

Proof. The result follows by definition of σx, zx, concatenation of diagrams and the definition of
walled generalized cycle type. □

Corollary 4.7. The set of equationsbx = 0 |x =

r r + 1

ix r + 1

ix ̸= r, one x for each walled generalized cycle type


viewed as equations in variables aµ as defined in equation (3.2) are linearly independent.

Proof. We represent the aforementioned equations by a matrix, whose rows are the bx’s and columns
the coefficients aµ.

By Proposition 4.6, each bx has a unique factor aµ appearing with coefficient 1, such that µ has
no NS, namely ac(σx), and a unique factor aµ′ (appearing also with coefficient 1), such that µ′ has
NS as a trivial part, namely ac(zx).

Now, note that c(σx) and c(zx) determine c(x), therefore the matrix cannot have the following
form:  1 0 · · · 0 1 0 · · · 0 ∗ ∗ ∗ ∗

1 0 · · · 0 1 0 · · · 0 ∗ ∗ ∗ ∗

︸ ︷︷ ︸
no NS

... ︸ ︷︷ ︸
trivial NS

... ︸ ︷︷ ︸
non-trivial NS

...


Therefore, the matrix is of the following form and, hence, the equations linearly independent.
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
1 0 · · · 0 1 0 · · · 0 ∗ ∗ ∗ ∗
1 0 · · · 0 0 1 · · · 0 ∗ ∗ ∗ ∗
0 1 · · · 0 1 0 · · · 0 ∗ ∗ ∗ ∗
0 1 · · · 0 0 1 · · · 0 ∗ ∗ ∗ ∗

︸ ︷︷ ︸
no NS

... ︸ ︷︷ ︸
trivial NS

... ︸ ︷︷ ︸
non-trivial NS

...


□

Theorem 4.8. The dimension of the center of Br,1(δ) is equal to |Λr,1|.

Proof. The result follows from Proposition 3.6 and Corollary 4.7. □
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